Az MC kiszámítása

Az MC kiszámításához ismernünk kell az ARMC fokokban kifejezett értékét, ennek meghatározását már a könyv elején elsajátítottuk. Az ARMC-t a meridián jelöli ki, azáltal, hogy metszi az Egyenlítőt; továbbhaladva pedig metszi az Ekliptikát is, ez utóbbi metszéspont az MC.

Attól függően, hogy az ARMC a Tavaszponthoz vagy az Őszponthoz van-e közelebb, a meridián ekliptikai és egyenlítői metszéspontjai és a megfelelő napéjegyenlőségi pont (a továbbiakban, röviden: N.P.) által alkotott gömbháromszöget vesszük számításaink alapjául. Ha az N.P.-től az ARMC-ig az óramutató járásával ellentétes irányban juthatunk el ebben a gömbháromszögben, akkor az N.P.-ARMC ívet pozitív szöggel fejezzük ki, ha az óramutató járásával megegyező irányban, akkor negatívval. (Erre azért van szükség, hogy a számítási műveletek közben az egymással kombinálódó szögfüggvények használata mellett is helyes eredményt kapjunk. A tangens függvény pl. 180 fokonként ismétlődő értékeket ad {tg(1°) = tg(181°)}. Ezzel a szemlélettel azonban kiküszöböljük az ebből adódó számítási kétértelműségeket.)

Így például, ha az ARMC értéke 181°, az N.P.-ARMC ív értékét 1°-nak vesszük, ha az ARMC 179° akkor -1°-nak; az N.P. az Őszpont. Ha az ARMC értéke 359° akkor az N.P.-ARMC ív -1°; az N.P. a Tavaszpont.

Az eddig elmondottakat az alábbi táblázattal foglalhatjuk össze:

 Az ARMC értéke   Az N.P.   Az N.P.-ARMC kiszámítása   Az N.P.-ARMC értéke 
0° - 90° a 0° ARMC 0° - 90°
90° - 180° g 0° ARMC - 180° -90° - 0°
180° - 270° g 0° ARMC - 180° 0° - 90°
270° - 360° a 0° ARMC° - 360° -90° - 0°

Adott tehát egy derékszögű gömháromszög, amelyben ismert egy oldal - az ARMC és az N.P. közti ív, ezt jelölje "A" -, egy szög - az Ekliptika hajlásszöge, amit e (epszilon) jelöl - és keresett az N.P. és az MC közötti ív, amit jelöljön "M".
A Napier-szabály szerint:
cos( e ) = ctg( 90 - A ) * ctg( M )
Ennek átalakításai:
cos( e ) = tg( A ) * ctg( M )
cos( e ) / tg( A ) = ctg( M )
tg( A ) / cos( e ) = tg( M )

Az így kapott M értéket, hozzáaadjuk az N.P. megfelelő ekliptikai értékéhez ( 0° - vagy 360°, ha a kapott érték negatív -, illetve 180° ). Ezzel megkaptuk az MC-t.

Nézzük meg a számítás menetét az ábrán megjelenített példán.
Az ARMC = 305°, ennek megfelelően az N.P. a Tavaszpont, az N.P.-ARMC ívszakasz pedig -55°
e = 23°26´ (Efemeridából vett adat)
cos( e ) = 0.9175234
tg( -55° ) = -1.428148
tg( M ) = -1.5565249
M = -57°17´
MC = 360°+ M = 302°43´, azaz
k 2°43´